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Abstract 
The interaction between genotype and environment (GEI) complicates the identification 

of stable, high-yielding genotypes in multi-environment trials. This study evaluates three 

statistical methods—AMMI, BLUP, and WAASB—to identify stable wheat genotypes. 

AMMI and WAASB consistently identified genotypes with superior mean yield and 

phenotypic stability, with G2 showing the highest yield and remarkable stability across 

environments. BLUP stability indices identified G1 as a stable and high-yielding variety. 

AMMI also helped identify "which-won-where" genotypes and mega-environments with 

discriminating powers useful for genotype evaluation. BLUP provided insights into 

genetic parameters and heritability, while WAASB was effective in clustering genotypes 

based on yield and stability. These methods offer valuable tools for selecting stable wheat 

genotypes suitable for diverse environments. 
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Introduction 
Breeders often utilize multi-environment trials (METs) to assess advanced genotypes, 

group similar environments, and identify the most suitable genotype for each environment 

and all environments. (Yan et al., 2000). METs help to identify genotypes that exhibit low 

variability and show consistent response across various environments (Fox et al., 1997). 

Identifying stable and high-yielding genotypes in multi-environment trials (METs) is 

challenging due to the combined additive effects of genotype (G) and environment (E), as 

well as the multiplicative influence of genotype × environment interaction (GEI) (Aarthi 

et al., 2020). Genotype × environment interaction (GEI) refers to the differential response 

of a genotype when exposed to varying environmental conditions (De Leon et al., 2016). 

The GEI is grouped into two main types: non-crossover, or quantitative interaction, and 

crossover, or qualitative interaction. When the ranks of genotypes shift, crossover 

interaction is used to explain how different genotypes react to multiple environments as 

their rankings change. Non-crossover interaction refers to differences in the level of 

genotype performance in different contexts without altering the order of the genotypes. 

From this perspective, a genotype is regarded as stable if its performance remains 

consistent and comparable across a range of different environmental conditions (Yan & 

Tinker, 2006). 

Selecting and introducing stable, high-yielding genotypes in various locations is one way 

to reduce GEI and enhance production (Malosetti et al., 2013). Various techniques have 

been utilized to identify stable genotypes, including both univariate and multivariate 

approaches. These methods encompass parametric and non-parametric stability analyses, 

each offering different ways to assess the consistency of genotypic performance across 

diverse environments (Sitaresmi et al., 2019; Yaghotipoor et al., 2017). However, 

univariate statistical approaches, both parametric and non-parametric, are often unable to 

accurately interpret complex and multidimensional interactions (Yaghotipoor et al., 2017). 

Multivariate methods, such as AMMI, BLUP, integrated AMMI and BLUP, and GGE 

Biplot, were found to be more effective in overcoming this issue. (Ahakpaz et al., 2021; 

Kindie et al., 2022; Santos & Marza, 2020). WAASB is a new stability metric that was 

created to address GEI by uniting the characteristics of both AMMI and BLUP models 

(Olivoto et al., 2019). 

From a practical perspective, AMMI, BLUP, and WAASB are distinct methodologies that 

aim to achieve the same objective of evaluating genotype stability. To enhance accuracy 

and robustness, multiple approaches and methods have been utilized to forecast the 

stability of genotypes across different crops, rather than relying on a single method alone 

(Kindie et al., 2022; Olivoto et al., 2019; Santos & Marza, 2020; Verma & Singh, 2021). 

In the current study, three widely recognized statistical methods —AMMI, BLUP, and 

WAASB —were utilized to assess and identify wheat genotypes with high productivity 

and stability. These methods were applied to evaluate the performance of genotypes across 

ten distinct environmental conditions in Pakistan. By combining these approaches, the 

study aimed to gain a comprehensive understanding of genotype × environment 

interactions and select genotypes that exhibit consistent high-yield performance and 

stability under diverse growing conditions.  

Materials and Methods 



 

 

 

 

 

 

 

 

 

 

Stability analysis of wheat genotypes 

 
Fifty wheat genotypes, along with two check varieties (Akbar-19 (G03) and Pak 13 (G35)), 

were evaluated in the present study (Table 1). Multi-environment trials (METs) were 

conducted across ten distinct regions in Punjab, Pakistan, during the 2021-2022 cropping 

seasons (Table 2).  

Table 1. List of Wheat Genotypes Evaluated in the 2021-2022 METs  

Sr. 

No. 

Genotype Genotype 

code 

Sr. 

No. 

Genotype Genotype 

code 

1 V-20337 G1 26 NW-74 G26 

2 V-19532 G2 27 V-19080 G27 

3 AKBAR-19 G3 28 AZP-21 G28 

4 V-19559 G4 29 19C166 G29 

5 V-20395 G5 30 NW-103 G30 

6 V-20355 G6 31 EV-19103 G31 

7 HYT-10-95 G7 32 19BT022 G32 

8 V-20418 G8 33 BF-7799 G33 

9 BF-20105 G9 34 INDUS-21 G34 

10 TWS-1907 G10 35 PAK-13 G35 

11 V-19590 G11 36 IS-18363 G36 

12 20C207 G12 37 V-20241 G37 

13 PGMB-20-

43 

G13 38 AZRI-8 G38 

14 TWS-1902 G14 39 V-19261 G39 

15 IS-18565 G15 40 NR-561 G40 

16 10141 G16 41 NR-564 G41 

17 180007 G17 42 WV-1196 G42 

18 NR-559 G18 43 NR-560 G43 

19 BF-7792 G19 44 19C160 G44 

20 TWS-1926 G20 45 WVH-1214 G45 

21 V-20352 G21 46 191272 G46 

22 10HP-428 G22 47 JM-1683 G47 

23 V-20330 G23 48 JM-1215 G48 

24 PGMB-20-

48 

G24 49 18FJ01 G49 

25 RUSTAM-

21 

G25 50 GOLDEN-

100 

G50 
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Table 2. Geographical and Environmental ID of the Ten Regions used in MET. 

Sr. 

No. 

Location Name Locatio

n ID 

Coordinates 

1 Wheat Research Institute, Faisalabad, Punjab, 

Pakistan 

E1 31° 29' 09" N 73° 

02' 20" E 

2 Barani Agricultural Research Station, Fateh 

Jang, Punjab, Pakistan 

E2 33° 39' 20" N 72° 

36' 53" E 

3 Groundnut Research Station, Attock, Punjab, 

Pakistan 

E3 34° 05' 36" N 72° 

18' 25" E 

4 Barani Agricultural Research Institute, 

Chakwal, Punjab, Pakistan 

E4 33° 14' 02" N 72° 

40' 50" E 

5 National Agricultural Research Center, 

Islamabad, Pakistan 

E5 34° 02' 19" N 73° 

09' 50" E 

6 Arid Zone Institute of Research, Bhakkar, 

Punjab, Pakistan 

E6 31° 43' 59" N 71° 

08' 38" E 

7 Karor, Layyah, Punjab, Pakistan E7 31° 18' 08" N 70° 

57' 06" E 

8 Regional Agricultural Research Centre, 

Bahawalpur, Punjab, Pakistan 

E8 32° 34' 11" N 71° 

07' 14" E 

9 University of Agriculture, Faisalabad, Punjab, 

Pakistan 

E9 31° 33' 01" N 73° 

08' 12" E 

10 Kallarkot, Sialkot, Punjab, Pakistan E10 32° 54' 09" N 74° 

17' 05" E 

 

An experiment was conducted using a randomized complete block design (RCBD) with 

two replications to ensure statistical reliability. The experimental plots consisted of four 

rows, each 5 meters in length, with a 30-centimeter spacing between rows. Grain yield 

(GY) was then estimated by converting the data from each experimental unit into 

kilograms per hectare, providing a standardized measure of productivity across the trials. 

The grain yield data obtained from all the METs were analyzed using the AMMI model, 

following the statistical methodology outlined by Zobel et al. (. To check the significance 

of GEI, an AMMI ANOVA was performed, and subsequently, the GEI was split into 

different AMMI PCs, with the significance of principal component axes (PCA) 

contributing to GEI being checked. Further, the WAAS stability index was calculated from 

the significant PCAs of G × E shown in AMMI ANOVA. Traditional AMMI biplots 1 and 

2 were plotted using mean performance and PC1 and PC1 and PC2, respectively. A view 

of the AMMI was created by using nominal yield and PC1.   Y × WAAS  Biplot was 

plotted by replacing the PC1 of the traditional AMMI biplot with WAAS (Olivoto et al., 

2019).  

For BLUP analysis, a linear mixed model was used, keeping genotype and G × E 

interaction effects as random effects. The significance of the random effects was assessed 

using the Likelihood Ratio Test (LRT). This statistical method compares the goodness of 

fit between models with and without the random effects. Variance components for the 



 

 

 

 

 

 

 

 

 

 

Stability analysis of wheat genotypes 

 
random effects were estimated using Restricted Maximum Likelihood (REML), which 

provides unbiased estimates of variance in mixed-effects models (Dempster et al., 1977). 

HMGV, RPGV, and HMRPGV stability indices were computed as described by Filho et 

al. (). WASSB analysis was performed according to the model proposed by Olivoto et al. 

(. WAASB stability index was also calculated to rank the genotypes regarding yield and 

stability.The analyses of the studied stability models were performed in R software (R 

4.5.1) using the metan multi-environment trial analysis Package developed by Olivato & 

Lúcio.  

Results  
The AMMI AONVA showed that the main effects of genotype and environment, along 

with GEI, were significant, with a p-value less than 0.001 (Table 3). In the total variation, 

the environmental effect of 65% was observed while the share of GEI was 17%. Further, 

the sum square was found to be 8.5 times more influential than the genotype effect, 

indicating that the variation due to GEI played a significantly larger role in determining 

grain yield than the genotypic differences alone. The GEI was further partitioned into 9 

PCs by AMMI analysis, which significantly contributed to G×E. Principal component 1 

(PC 1) was highly significant (P < 0.01) and accounted for 30.2% of the variability in GEI. 

In the current study, the top two IPCAs explained approximately 51.1% of the total sum 

of squares of GEI.  

In the AMMI1 biplot, PC1 values and mean yields were used for plotting environments 

and genotypes (Figure 1). The genotypes G2 and G40, which had a yield value higher than 

the mean and comparable PC1 scores, were identified as the most adapted genotypes with 

relatively less yield variation across environments. The environment E6 with PC1 scores 

close to zero indicated minimal interaction effects, suggesting that all genotypes exhibited 

consistent performance in this environment. Hence, these were considered favorable 

environments for all the tested genotypes. The environments E2, E9, E1, E5, and E8, 

farthest from the origin, had the most significant effect of the G×E. So, the relative ranking 

of genotypes was unstable in these tested environments (Figure 1). 

In the AMMI2 biplot, the first two IPCs, which contributed more to G×E, were used for 

plotting genotypes and environments.  Genotypes G50, G47, G32, and G8, located far 

from the origin, exhibited the most significant fluctuations in response to environmental 

changes, suggesting a higher degree of genotype × environment interaction (G×E). On the 

other hand, genotypes G2, situated within the orient, and G13, positioned close to the 

biplot origin, demonstrated a smaller degree of G×E interaction, reflecting their greater 

stability and consistent performance across all environments. Environment E3, E4, E7, 

and E10 near the origin were showing low GEI, while the environment E9, E2, E6, E1, 

E5, and E8 far from the origin had high GEI (Figure 2).  
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Table 3. AMMI Analysis of variance of wheat grain yield along with significant IPCA  

Sov Df SS MS F value P Value SS% 

ENV 9 873484186.

8 

9705379

9 

6079.16

2 

0** 65 

REP(ENV) 10 159649.96 15965 14.5220

4 

1.1E-

22NS 

0 

GEN 49 28196855.5

2 

575446 523.435

7 

0** 2 

GEN×ENV/(GEI) 44

1 

222556970.

2 

504664.3 459.051

4 

0** 17 

 The proportion of PCs in GEI 

PC1 57 67101096.7

7 

1177212 1070.81 0** 30.2 

PC2 55 46520070.7

4 

845819.5 769.37 0** 20.9 

PC3 53 35081964.9

2 

661923.9 602.1 0** 15.8 

PC4 51 26806732.7

1 

525622.2 478.12 0** 12 

PC5 49 21925637.5

5 

447462 407.02 0** 9.9 

PC6 47 11327680.3

8 

241014.5 219.23 0** 5.1 

PC7 45 7972271.04

6 

177161.6 161.15 0** 3.6 

PC8 43 3168619.09

4 

73688.82 67.03 0** 1.4 

PC9 41 2652896.98 64704.8 58.86 0** 1.2 

Residuals 49

0 

538688.04 1099.363    

Total 14

40 

1347493321 935759.3       

**= Significant at 1% and 5% of P value, NS results are not significant 
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Figure 1 AMMI1 Biplot of yield and PC1 

Which-won-were  

The "which-won-where" genotype, according to their forecasted yield, was illustrated, 

along with the identification of mega-environments, in Figure 3. Genotypes G18, G1, G7, 

G26, G35, G48, G46, G49, G50, and G47 exhibit a highly variable response across all 

environments. The genotype G-18 topped in environments E1 regarding nominal yield. 

The genotype G-47 performed well in environments E9 and E2, while yielding less in E1. 

From the environment, PC1 scores identified seven mega-environments.  Regarding mega 

environments, E1, E5, E8, E9, and E2 fall into five separate mega environments, while 

E3, E4, and E10 form a single mega environment, and E7 and E6 collectively form another 

mega environment. 

Y × WAAS biplot 

In AMMI analysis, only two PCs were used, whereas nine PCs were significant for the 

current data set. Significant PCAs of G × E obtained the WAAS values. Furthermore, the 

average yield performance and stability of the genotypes and environments were 

demonstrated by plotting a graph between Y and the WAAS value. The Y × WAAS biplot 
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was divided into four quadrants, which represented the four classifications of genotypes 

and environments.  

 

Figure 2. AMMI2 Biplot among the first two IPCAs contributing more to G × E 

 

Figure 3. Nominal yield plot showing Which-won-were and mega environments. 

Genotypes grouped in the I quadrant, i.e., G32, G50, G47, and G23, were unstable 

genotypes and had lower productivity than the grand mean, while environments E2 and 

E4 present in quadrant I were identified as highly discriminating. In quadrant II, G35, G20, 
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G21, and G26 were grouped, which were also poorly stable and had grain yields above the 

average value. The environments E1, E9, E8, E6, and E5, included in the II quadrant, 

provided high grain yield with good discrimination ability, as they have a high WAAS 

value. Genotypes, i.e., G45, G39, G42, and G43, included in the III quadrant had low grain 

yield, hence are less productive, but are stable, as they have a low value of WAAS. The 

environments E3 within quadrant III were poorly productive and had low discrimination 

power. The genotypes present in the IV quadrant, i.e., G1, G18, G25, G29, G13, G23, 

G24, G6, G10, G40, G41, and G9, were broadly adapted as they had high productivity as 

well as greater stability performance (lesser values of WAAS). G13 and G24 present in 

the IV quadrant are more stable than the rest of the genotype, as they have low WAAS 

values, but their performance regarding yield was just near the mean. The environment 

E7, included in this quadrant, was highly productive but had low discrimination aptitude 

(Figure 4). 

 

Figure 4. Y × WAAS biplot showing genotypes and environmental distribution into 

different quarters according to stability and yield 

BLUP Analysis 

LRT verifies the random effects significance. GEI was significant as the probability value 

for the Likelihood Ratio Test value was p< 0.01 (Table 4).  The interaction was of a 

qualitative or crossover type, as the ranking of the genotypes changed across environments 

(Figure 5).  
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Figure 5. BLUP plot showing qualitative or crossover type GEI. 

Variance components, along with different genetic parameters, were presented in Table 4. 

Proximally, 98.19% of the σ2p was found due to the σ2ge. σ2g contribution in σ2p was only 

1.38%. Furthermore, fewer estimates of broad-sense heritability (h²g) of 0.014 were 

detected, which was due to the presence of a high σ²ge. The genotypic accuracy of 

selection was also low, 0.357. The genotypic coefficient of variance was (1.376), found to 

be high as compared to the residual CV (0.767%) (Table 4).   

BLUP-based stability indexes, i.e., the harmonic mean of genotypic values (HMGV), the 

relative performance of genotypic values (RPGV), and harmonic mean of relative 

performance of genotypic values (HMRPGV), along with their ranking, are described in 

Table 5. G1 was ranked 1st regarding all three stability indices of BLUP (Table 5), while 

the rest of the genotypes showed variation concerning ranking regarding these parameters. 

Table 4. BLUP base variance components and genetic parameters  

Statistics Likelihood ratio test 

G GEI 

χ2 0.393 2309.88 

p value 0.530 0.0000 

   

REML Variance components 

Estimates 



 

 

 

 

 

 

 

 

 

 

Stability analysis of wheat genotypes 

 
Genetic variance (σ2g) 3539.75(1.38%) 

GEI-induced variance (σ2ge) 251782.2(98.19%) 

Error variance (σ2e) 1099.362(0.42%) 

Variance observed in the phenotype (σ2p) 256421.27 

Heritability in the broad sense (h2g) 0.014 

Coefficient of determination of the Interaction effects 

(R²ge) 

0.981 

Mean-based heritability (h2gm) 0.123 

Selection accuracy (Ac) 0.357 

GE correlation (rge) 0.996 

Genotypic coefficient of variation (CV g) 1.376 

Error coefficient of variation (CVr) 0.767 

 CVg/CVr 1.794 

 

Table 5. Ranking of the genotypes according to BLUP and WAASB-based stability 

indexes. 

GE

N 

Yie

ld 

HMG

V 

HMG

V 

Ranki

ng 

RPG

V 

Yiel

d 

RPG

V 

Ranki

ng 

HMRP

GV 

Yield 

 

HMRP

GV 

Rankin

g 

WAA

SB 

Value 

WAA

SB 

Ranki

ng 

G1 475

3  

4473  1  4760  1  4721  1  9  43  

G1

0 

452

4  

4163  12  4469  8  4442  7  5  7  

G1

1 

432

2  

4165  10  4454  9  4419  9  6  12  

G1

2 

426

0  

4074  27  4362  25  4306  25  6  18  

G1

3 

437

7  

4187  7  4419  19  4406  12  3  2  

G1

4 

449

9  

3775  44  4152  42  4062  42  9  40  

G1

5 

434

4  

4007  33  4318  31  4220  32  10  46  

G1

6 

443

7  

4095  25  4375  23  4335  22  6  15  

G1

7 

445

7  

4209  4  4484  6  4454  6  6  17  

G1

8 

449

8  

4155  14  4536  2  4473  3  9  35  
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G1

9 

446

5  

4135  16  4413  20  4375  17  7  21  

G2 435

2  

4272  2  4525  3  4513  2  4  6  

G2

0 

440

1  

4174  9  4425  15  4344  21  9  38  

G2

1 

419

9  

4128  21  4444  11  4380  15  7  27  

G2

2 

430

6  

4135  17  4423  16  4393  14  7  23  

G2

3 

436

6  

4010  32  4310  32  4212  34  11  47  

G2

4 

448

5  

4131  20  4420  18  4403  13  3  3  

G2

5 

459

8  

4092  26  4344  28  4308  24  7  25  

G2

6 

441

4  

4156  13  4496  5  4431  8  9  42  

G2

7 

436

9  

3818  42  4103  44  4078  41  6  11  

G2

8 

443

3  

3954  36  4228  38  4197  36  6  16  

G2

9 

444

0  

4132  18  4436  13  4366  18  8  29  

G3 429

2  

4132  19  4377  22  4306  26  8  31  

G3

0 

444

8  

3929  37  4201  41  4176  40  5  9  

G3

1 

432

4  

4062  28  4306  33  4254  30  8  30  

G3

2 

452

1  

3268  50  3836  50  3438  50  14  49  

G3

3 

413

3  

4175  8  4423  17  4407  11  5  8  

G3

4 

424

0  

4104  23  4341  29  4294  28  6  14  

G3

5 

441

4  

4193  6  4441  12  4365  19  10  44  

G3

6 

421

8  

3850  41  4265  36  4189  38  8  32  

G3

7 

427

0  

4028  31  4293  34  4233  31  6  19  

G3

8 

385

9  

3998  34  4346  27  4302  27  4  5  
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G3

9 

441

4  

3670  49  4048  46  3963  48  8  28  

G4 429

9  

3928  38  4234  37  4179  39  9  39  

G4

0 

437

4  

4151  15  4447  10  4408  10  6  13  

G4

1 

435

4  

4061  29  4363  24  4321  23  7  24  

G4

2 

426

4  

3739  46  4081  45  4026  45  7  20  

G4

3 

439

1  

3982  35  4209  40  4207  35  3  1  

G4

4 

410

9  

4095  24  4349  26  4278  29  7  22  

G4

5 

446

3  

3775  45  4031  48  3975  47  9  36  

G4

6 

438

8  

3815  43  4126  43  4056  44  9  34  

G4

7 

412

8  

4036  30  4331  30  4191  37  12  48  

G4

8 

420

4  

3727  47  4039  47  3996  46  8  33  

G4

9 

429

7  

3691  48  3908  49  3859  49  10  45  

G5 401

8  

4164  11  4396  21  4378  16  4  4  

G5

0 

412

9  

3865  40  4226  39  4056  43  15  50  

G6 425

0  

4198  5  4483  7  4466  4  5  10  

G7 407

9  

3924  39  4291  35  4217  33  9  37  

G8 386

7  

4120  22  4431  14  4357  20  9  41  

G9 418

4  

4256  3  4509  4  4458  5  7  26  

BLUP-based predicted grain yield for the 50 genotypes is shown in Figure 6. Blue circles 

signify the genotypes that had above-average BLUP, and red circles signify the genotypes 

that had below-average BLUP. Hence, genotype G1 followed by G18 had the highest 

BLUP (Figure 6).  



 

 

 

 

 

 

 

 

 
Zeeshan et al.                                                                                                                  189 

 

 

Figure 6.  Based on the predicted grain yield of the 50 wheat genotypes 

To illustrate the ranking of genotypes in terms of stability using WAASB analysis, a heat 

map was developed based on the number of IPCAs utilized in the WAASB estimation 

(Figure 9). Genotypes with identical stability performance were grouped and are indicated 

by similar-colored letters on the left side of the heatmap. Genotypes highlighted with red 

color, i.e., G6, G5, G43, G42, G40, G36, G34, G33, had low WAASB values considering 

all IPCA and therefore were the group of highly stable genotypes (highlighted with red 

color text). Genotypes highlighted with black color, i.e., G8, G7, G50, G47, G4, G35, G32, 

G26, G23, and G15, had high WAASB values considering all IPCA and therefore were 

the group of least stable genotypes (Figure 7). 
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Figure 6. Ranking of genotypes according to significant IPSA used in WAASB 

However, Figure 08 shows how the ranking of the genotypes changes with the change of 

weights assigned to WAASB/GY. The ranks in the left-most side column of the heat map 

are achieved while stability was the only choice; when we move from left to right, the 

weight for the grain yield increased by 5% in each scenario, while the weight of the 

stability decreased. Furthermore, clustering of the genotypes, which are colored differently 

and depicted on the left side of Figure 08, was used to identify groups of genotypes that 

performed similarly in terms of stability and productivity. Genotypes, i.e., G6, G5, G40, 

G33, G38, G24, G2, G18, G17, G13, G11, G10, and G1 within a green color cluster, were 

identified as productive and well-adapted genotypes. Genotypes with blue color cluster 

G50, G49, G48, G47, G46, G45, G4, G39, G32, G23, G15 and G14 were poorly productive 

and unstable. G43, G42, and G27 genotypes, which were included in the black color 

cluster, were stable but ranked lower in yield. Red color cluster genotypes, such as G9, 

G8, G7, and G44, are moderately productive and stable genotypes (Figure 8). 
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Figure 7. Clustering of the 50 wheat genotypes according to WAASB/GY ratio. 

DISCUSSION 

Multilocation/multi-environment trials are crucial for the approval of a variety for general 

cultivation in plant breeding programs. Prior to cultivar recommendations for general 

cultivation, prediction accuracy plays a critical role in successfully identifying genotypes 

with greater and consistent yields, as well as demarcating mega-environments. The 

primary obstacle to finding a stable genotype with high yield potential is GEI, which alters 

the genotype's performance in different environments (Yan & Frégeau-Reid, 2018). 

AMMI (Verma & Singh, 2021), BLUP (Sood et al., 2020), and WAASB (T. Olivoto et 

al., 2019) methods have been used for this purpose. All of these techniques have been 

applied in the current investigation to identify more stable and higher-yielding genotypes.  

First, the combined ANOVA revealed the significance of GEI in the current study. 

According to the estimation of variance components based on REML/BLUP, the σ2ge is 

98.19%, whereas the σ2g is only 1.38%. It was also discovered that the broad sense 

heritability was low due to high σ2ge.   

From the AMMI biplots, G2 was identified as a highly stable genotype. Similarly, 

WAASB also identifies G2 as a stable one. However, highly contradictory results were 

obtained when BLUP-based stability indexes were used for identifying stable genotypes.  

HMGV, RPGY, and HMPRGY found G1 as the most stable. These paradoxes highlight a 

crucial idea about "stability." The term “high stability” is valid only with high mean 

performance. Considering this concept, G43 was identified as highly “stable”, but their 

performance is just near the mean, so they are not considered well. This means that they 

were not suitable for cultivation in all environments; however, this indicates that the 

performance of these genotypes was relatively stable. However, the genotypes G2 and G1, 

along with stability, had high mean performance. So, they are suitable genotypes for 

general cultivation. These results should also make it clear that identifying and choosing 
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only stable genotypes may be deceptive. “Stable” genotypes are required only when they 

have greater average performance along with stability.  

The G1 genotype had the highest BLUP-based predicted grain yield and was identified as 

a desirable genotype through BLUP. Y× WAAS also grouped the G1 in highly productive 

and broadly adapted genotypes in the quarter. However, regarding WAASBY, G1 is in 

second position after G2. In addition, WAASB was found to be a more effective model 

than AMMI and BLUP for grouping genotypes based on mean and stability performance. 

WAASB considers all the IPCA when quantifying stability, whereas AMMI considers 

only the first two IPCA, which contribute 51.1% to GEI, and ignores IPCA 3, which 

contributes 15.8% to GEI. (Hussain et al., 2021) Also found WAASB helpful in 

identifying high-yielding and stable chickpea genotypes for drought-susceptible regions.  

Conclusion 

We concluded that while AMMI, BLUP, and WAASB are three multivariate methods that 

can be used to select stable genotypes, using just one method could be misleading because 

stable genotypes can change when stability methods are changed. This conclusion was 

based on the evaluation of 50 wheat genotypes in ten environments. Breeders should focus 

on selecting stable genotypes with good mean performance because only stable genotypes 

may be low yielders and unsuitable for widespread cultivation. Y× WAAS and WASSBY 

graphs were found to be more helpful for this objective since they categorized the 

genotypes into groups based on their stability and productivity performance. 

Consequently, out of the 50 genotypes, genotypes G1 and G2 were chosen as the most 

stable and highly productive genotypes. Before releasing high-yielding stable genotypes 

for general cultivation, we advise breeders to use various multivariate methods to find 

them. This will help to improve the crop's yield per unit area by minimizing GEI.  
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