

 ISSN 2709–3662 (Print) ISSN 2709–3670 (Online) https://doi.org/10.52587/JAF050103 *Journal of Agriculture and Food 2024, Volume 5, No.1, pp. 33-*52

Role of CRISPR/CAS in Agriculture: A brief review

Numra Shehzadi¹, Afadia Omer¹, Dua Noor², Junaid Iqbal³ , Shahid Nazir³, Sajid ur Rahman³

Abstract

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) with Cas9 systems have proven to be an effective molecular tool for editing the genome in a variety of organisms, including plants. This technology facilitates to introduce desired mutations at precise location within genomes. In addition, this system also eliminates the usage of transgene and vector free editing with desirable modifications. This tool is being successfully used for the development of disease resistant and climate resilient plant genotypes. This technology not only improves the crop production, but also help in understanding the functions of genes linked with different traits. Hence, CRISPR-Cas9 can be a potential source of second green revolution in the field of agriculture. This review mainly focused on different types and sub-types of CRISPR-Cas system, its classifications and successful application in the field of agriculture to develop disease resistant, stress tolerant and to improve nutritional quality in plants.

Keywords: CRISPR; Crops; Trait Improvement; Biotic; Abiotic Stresses; challenges

Article History: Received: 19th May, 2024; Revised: 13th August, 2024; Accepted: 10th October, 2024

¹Department Atta ur Rahman school of Biosciences (ASAB), National University of Sciences and Technology (NUST) Islamabad. ³Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad; Corresponding Author: junaid9pbg.uaf@gmail.com

Introduction

The CRISPR-Cas9 (clustered regularly spaced short palindromic repeat/CRISPRassociated protein) technology is essentially about a pair of "micro-scissors" that cut DNA more specifically and accurately than conventional techniques. Geneticists and medical researchers can edit particular areas of the genome by deleting, adding or changing certain DNA sequences using the cutting-edge CRISPR-Cas9 method. To adjust the genome as needed, scientists rely on cells' natural DNA repair mechanisms when DNA is cut.

For humans to survive on earth, food is essential. However, utilizing conventional methods of crop improvement, it is extremely challenging to meet the world's growing food needs due to a population that is expanding quickly. In order to increase metabolic flux and improve the nutritional value of plant species, scientists have long used a variety of genomic techniques to introduce variation at the genetic level (Moore et al., 2014). Unfortunately, these methods of plant breeding are laborious and time-consuming, making them unsuitable for the current needs of a rapidly growing population. Genome engineering (GE) presents desired qualities into plants like tolerance to biotic and abiotic stress, improved yields, feeding the growing populations and fighting human malnutrition by increasing the nutritional (metabolite) value of plant (Tyagi et al., 2020). The bacterial adaptive immune system (*Streptococcus pyogenes*) is the source of the third generation of genome editing technology, which is highly effective, takes less time, is highly precise, quick, and easy compared to conventional gene editing tools like ZFN (zinc finger nucleases) and TALEN (translation activator-like effector nucleases). It is among the greatest techniques for genome engineering (Upadhyay et al., 2013: Wong et al., 2015). With greater accuracy and the ability to introduce heritable changes in the target location, CRISPR-Cas gene editing technology can create plants devoid of transgenes. The utility of this approach was underlined by reports of CRISPR-Cas9 based genome editing in plants in 2013 (Feng et al., 2013; Shan et al., 2013). Following these reports, CRISPR technology was used in various different agricultural applications. Some of these included higher sugar content, enhanced tomato flavor, wheat resilience to powdery mildew, higher yield from mushrooms with less melanin, and maize resistance to drought (Chaudhary et al., 2022). From developing tuberculosis-resistant cows (Gao et al., 2017) which require less antibiotic use, to mushrooms resistant to browning (Waltz, 2016) that lead to less spoilage, CRISPR is changing the landscape of agriculture and food. It can be used to develop high-yielding crops while reducing the need for water, fertilizers and chemical crop protection. As a result, the CRISPR-Cas9 technology has emerged as an essential tool for genome editing in crops and plants (Rao and Wang, 2021). Food security and plant fitness are problems that can be solved through plant breeding innovations. CRISPR-Cas9 technology is one of the innovations that could significantly contribute to solutions in the not-too-distant future. The goal of this paper is to provide an overview of CRISPR/Cas types, the function of the CRISPR-Cas9 system in agriculture, talk about the worldwide CRISPR-Cas9 scenario, obstacles, and potential future applications.

1. Types of CRISPR-Cas

The top three CRISPR-Cas system categories are listed in the classification hierarchy. Between the three categories, there are three different signature genes. Cas9, Cas3, and Cas10 genes are present in the type I, type II, and type III of systems, respectively. Type

IV is a unique type; however, it is less frequent. Each type has further subtypes as shown in figure 1.

Typical CRISPR-Cas system classification and organization for each CRISPR-Cas subtype. A representative genome is provided for each CRISPR-Cas subtype, along with the names of the corresponding gene locus tags. The color-coding and family name used to identify homologous genes. Following the category is a list of names. "Legacy names" are in standard font, and suggested systematic names are in bold. LS large subunit, which is composed of the Cas10, Cas8, Cmr2, Cmr5, and Cse subfamilies, and SS small subunit are abbreviations. Crosses stand for genes that produce large inactive subunits. The genes and domain components of effector complexes are highlighted using various backgrounds. The signature protein family's capacity to recognize and classify subtypes using the appropriate profile can be described as strong or weak. Strong means that it is a reliable signature with a high level of specificity and selectivity, whereas weak means that it is the best signature currently available for a given subtype despite producing a lot of false positives or false due to technological challenges with the sensitivity and selectivity of Cas protein family profiles, uncertainties around Cas1 phylogeny, and known CRISPR-Cas subtype classification, it is currently not possible to fully automate the identification of CRISPR-Cas subtypes in general. The most effective method for ensuring accurate classification is to combine different sources of information, such as Cas1 phylogeny, the identification and annotation of as many Cas proteins as possible in the target locus, and, for type II systems, the identification of the trans-activating crRNA (tracrRNA) genes as shown in figure 2a, 2b and 2c (Rao and Wang 2021).

	T						\mathbf{H}			Ш			$I\!V$					
$I-A$		$I-B$	L _C	$I-C$ variant	$I - D$	$I-E$	$I-F$	$I-F$ variant 1	$I-F$ variant \overline{a}	$II-A$	$II-B$	$II-C$	$III-A$	$III-A$ variant	$III-B$	$III-B$ variant	IV	IV-variant
cs3" cas8A1	Cas4 cas1	cas2 Cas6	$\cos 3$ cas5	Cas3 cas2	cas4 CasS cas1	$\cos 2$ Cas3	Cas1 cas2	Cas8f	Cas1	es. Laks	E Las I	C as9 East	cas1 and cas2 Cas6	Cas10 cas7	Cas ₇ cas1 cas2	Cas2	dinG	sCa8u
caso	csa3	cassb $_{\rm cas7}$	cas8c	cas8c $\mathtt{cas}\,7$	cas37 $\cos 2$	cas8e SS ₃	cas3	and cas5 fusion	cas2 and cas3	Ē	B.	Cana	cas10 S.	cas ₅	cas10 cas	cas10 $\rm{cas}7$	cas8u	$cos\theta$
	SS cas/7	$cas\bar{5}$	$\cos 7$	cas5	cas10d cas7	cas7 cas5	cas8f cas5		$\cos\!7$		yma.		cas7	s ₂	cas7	Ø,	\rm{cas}	cas5
	caso cas3	cas3 cas4 Cas	C884 cas1 cas2	cas6 cas4 cas	cas caso	casó cas1	cas7 cas6f	cas7 cas6f	cas5 cas6f				cass $\cos 7$	$\cos 7$	$_{\rm SS}$ cas6 $\cos 7$	cas5	cas5	
	Sulfolobus solfatancus P2	Syntrophoboturus glycolicus	Bacillus halodurans c-125	Geobacter sulfurreducens	Cyanothece sb PCC 8802	Escherichia coli K12	Yersinia pseudotuberculosis IIIdA	Shewanella EdM piezotolerans	Methylophaga sp. JAM $\overline{}$	Streptococcus thermophilus CNRZ1066	sumd Legionella pneumophila str.	Neisserialactania 020-06	Staphylococcus opidemidis RP62A	Synechocystis 6803 sp. PCC	byrococcus 3638 furiosus DSM	thermautotrophicus Methanothermobacter str.	Acidithiobacillus	Rodococcus

Figure 1. Classification hierarchy of CRISPR-Cas system

Figure 2a**.** Classification of CRISPR-Cas subtype

Figure 2b. Classification of CRISPR-Cas subtype

Figure 2c. Classification of CRISPR-Cas subtype

2. Role of CRISPR-Cas9 in agriculture

CRISPR-Cas9 technology has presented a high prospect to boost crops, as well as serve as a helpful research tool for more fast analysis of desired genes involved in growth and development, biofortification, disease resistance, and improved tolerance to a variety of biotic and abiotic stresses, might stimulate agricultural productivity even more by implanting it with conventional breeding techniques. Lately, CRISPR-Cas9 has been used in a broad range of creative breeding methods that manage reproduction-related hereditary characteristic (Das et al., 2022). It can also be used for the genetic modification of plants, which has been neglected so far. The potential this has for breeding crop and sustainable agriculture development is immense (Pineda et al., 2019). Genome editing technologies have demonstrated their enormous potential in the development of improved crop varieties with key agronomic traits (Abdallah et al., 2015). One of the necessary parameters of quality advancement in plants is gene versatility. Unknown plant types can be developed by manipulating the gene pool (Sikora et al., 2011).

2.1 Knockout mediated crop trait improvement

To get a crop variety that can withstand both biotic and abiotic stress and produces more, unfavorable features that have unfavorable effects on the crop must be eliminated. Numerous features, including quality, yield, disease resistance, biotic and abiotic stress tolerance, can be improved using CRISPR-Cas9. By using the knockout mechanism of gene editing, hybrid breeding methods and other crucial areas of crop breeding have been enhanced (Adhikari and Poudel, 2020).

2.1.1. Disease resistant

A growing threat to global food security comes from plant diseases brought on by fungi, bacteria, oomycetes, viruses, and other microbes. The worldwide challenge to food security is becoming more understood to include emerging crop diseases. Diseases in significant food crops cause pre-harvest production losses of up to 15% (Fisher et al. 2012). Technology using CRISPR-Cas9 for genome editing has created new possibilities to rapidly develop disease-resistant plant cultivars by stacking disease resistance (R) genes or disrupting/deleting susceptibility (S) genes as shown in table 1.

Crop	Target gene	Trait	Resulting Trait	Reference
Bread wheat	TaMLO-A1, TaMLO-B1, and TaMLO-D1	Powdery mildew Resistance.	No apparent growth of fungus was observed on edited plant	(Wang et al., 2014)
Cotton	sgRNAs Two $(GhMYB25-$ like-sgRNA1 and sgRNA2)	Resistance to Verticillium (wilt) wilt disease).	with resistance Plants to Verticillium wilt were successfully created through this investigation.	(Li et al. 2017)
Tomato	SIDMR6-1	Deletion of SIDMR6-1 gene	significant resistance to infections such <i>Xanthomonas</i> species, <i>P. capsici</i> , and <i>P.</i> syringae.	(Paula et al., 2016
Maize	ZmPRms	Aspergillus flavus	genotypes of maize that are less with contaminated aflatoxin because they are A. <i>flavus</i> resistant.	(Majumdar) al. et 2017)

Table 1. CRISPR based application for Disease resistance in various crops.

2.1.2. Viral resistant

In natural ecosystems, one of the main factors contributing to the loss of valuable crops is viral infections. By causing noticeable symptoms in plants, these diseases significantly impair production and strain the economy. Genetic engineering has shown to be a successful method for boosting plant tolerance to many viral diseases. There are restrictions on how thoroughly or entirely viral infection in crops may be eliminated by previously discovered procedures. Utilizing CRISPR technologies can help overcome these restrictions given that viral infections of crops diminish worldwide yields by 10% to 15% as shown in table (Van Regenmortel and Mahy, 2009).

Table 2. CRISPR based application for Viral resistant in various crops.

Crop	Target gene	Trait	Resulting Trait	Reference
Arabidopsis thaliana	factor. host eIF(iso)4E	resistance against Potyvirus	$eIF(iso)4E$, host factor deleted, which is 1S essential for survival of virus.	(Pyott et al. 2013)
Tomato	protein coat (CP) or replicase (Rep)	Enhanced resistance against leaf curl virus	Knock out	(Tashkandi et al. 2018)
Soybean	GmF3H1 GmF3H2 GmFNSII-1	Soybean mosaic virus (SMV) resistance	SMV resistance and isoflavone increased levels in soy beans	(Rajput et al. 2021)
Rice	eIF4G	Rice tungro spherical virus	Knock out	(Macovei et al. 2018)

2.1.3. Increasing biotic and abiotic stress tolerance

Abiotic stress and biotic stress are important aspects affecting crop production and quality. The yield loss brought on by disease-causing viruses and other abiotic stresses is far larger, with an estimated yield loss due to plant infections of up to 16% (Ficke et al. 2018). Through genome editing with CRISPR-Cas9 knockouts, a variety of crops have been improved in their resistance to biological stress. By interfering with the OsSWEET13 promoter and knocking off the OsERF922 gene, resistance to crop-damaging diseases, such as the fungal disease known as rice blast, was produced. As a result, rice developed a resistance to bacterial blight as shown in table 3 (Zhou et al., 2015).

Shehzadi et al. 41

Crop	Target gene	Trait	Resulting Trait	Reference
Cotton	GhPIN1-3, GhPIN ₂	Abiotic resistance	Drought Resistance	(Dass et al., 2017)
Sugarcane	ScNsLTP	Resistance to Abiotic stresses	Dryness and Freezing Resistance	(Chen et al., 2017)
Cotton	GhRDL1	Abiotic resistance	Drought Resistance	(He et al., 2017)
Tomato	SIMAPK3, SIMAPK6	Abiotic resistance	Resistance wilt. to Drought Resistance	(Wang et al., 2017)
Rice	TIFY1b transcription factor	biotic resistance	cold tolerant	(Huang et al., 2107)
Soy bean	GmSnRK1.1	biotic resistance	Phytophthora sojae	(Wang et al., 2019)
Tomato	SIARF4 gene	Knocking out the Auxin Response Factor 4 (ARF4)	Enhances salt and osmotic tolerance.	(Bouzroud al., et 2020)
Rice	OsPRX2	Abiotic resistance	Potassium deficiency tolerance	(Mao et al., 2018)

2.1.4. Yield Improvement

Crop yields are becoming more and more at risk due to unfavorable climate change, diminishing air quality, and deteriorating soil health. Scientists are attempting to develop crops that can resist severe and unpredictable settings while producing more in order to increase food yields in a changing climate (Rodriguez-Leal et al., 2017). In crop species, CRISPR-Cas9 creates revolutionary changes. CRISPR-Cas9 is revolutionizing crop species. That potential has led to several laboratories around the world using this powerful technology (Wang et al., 2021). Rice with less amylose and better eating and cooking quality was generated by using CRISPR-Cas9 to knock out Waxy as shown in table 4 (Zhang et al., 2018).

2.1.5. Quality and nutrition Improvement

With the use of CRISPR-Cas9, yields of crops produced in tropical regions have increased while also improving in quality. Quality qualities change depending on the unique breeding needs. Crop odour, nutritional value, starch content, and storage quality have all been impacted by quality improvement by genome editing thus far (Chen et al., 2019). Malnutrition affects roughly 2 billion people worldwide and has a considerable detrimental effect on society, economics, and health, according to the World Health Organisation (WHO, Geneva, Switzerland). This is especially true in the least developed and developing nations (Camerlengo et al., 2022). Scientists are seeking to design plants that can withstand

challenging and unpredictably occurring conditions while producing more in order to boost food production in a changing climate. Research exploring the potential of CRISPR-Cas9 to increase crop yields is escalating to meet these goals as shown in table 5 (Chakravorty et al., 2022).

Table 4. CRISPR based application for Yield Improvement in various crops.

Crop	Target gene	Trait	Resulting Trait	Reference
Maize	CLE	Grain yield	grain-yield Enhancing trait.	(Liu et al. 2021)
Soybean	By silencing GmFT2a and GmFT5a	High yields.	better yields because it can be grown in warmer areas.	(Cai et al., 2020)
Rice	OsSPL16	Grain yield	Modifying the expression Pyruvate Enzymes of improves grain yield	(Usman et al., 2020)
Rapeseed	BnaMAXI	Enhance yield	Knockout of two <i>BnaMAX1</i> homologs increases yield	(Zheng) et al., 2020)
Wheat	TaGW2 (negative) regulator of seed size).	Increase the seed size.	Knockout the function of all homologs of TaGW2.	(Wang et al., 2018)
Rice	PYL1, PYL4 and PYL6	Enhance yield	growth Improve and increase grain yield	(Mio et al., 2018)
Rice	IPA1, DEP1, Gnla , and GS ₃	manipulate multiple regulators of yield-related traits	enhanced grain number, greater grain size, and thicker erect panicles	$(Li$ et al., 2016)
Wheat	GW2, GW7, and GASR7	knock-out of genes	Increased seed size and seed weight as a result.	(Wang et al., 2018)
Maize	CLV-WUS	inflorescence meristem	meristematic improve activity and grain yield	(Rodríguez- Leal et al., 2017)

3*. Global scenario of CRISPR-Cas in agriculture*

The CRISPR Cas also help us in the field of horticulture. It used for target gene and change the expression of gene. Different targeted gene and traits were improved with CRISPR Cas shown in table 6, quality improvement in table 7, tolerances to abiotic stresses in table 8 and resistances to biotic stress in table 9.

Table 6. Quality and nutritional features of horticultural crops using CRISPR technology.

Table 7. Quality improvement of horticultural crops using CRISPR technology.

Table 8. Resistance to abiotic stresses in crops using CRISPR technology.

Crop species	Target genes	Target crops
Watermelon	ALS.	Resistance against herbicide
Tomato	MAPK3	lowered tolerance to drought stress
Tomato	CBF1	reduction in the ability to withstand cold stress
Tomato	RZR ₁	lower heat stress tolerance

Table 9. Resistance to biotic stresses in crops using CRISPR technology

4. Challenges in application of CRISPR-Cas9

Despite CRISPR-Cas9's enormous promise for genome editing, a number of key problems still need to be resolved, including off-target mutations, PAM dependency, the synthesis of gRNA, and the methods used to modify CRISPR-Cas9 constructs (Zhang et al., 2014). Although specifically designed Cas9 nickases and mutants that reduce non-specific DNA binding have been created to address this problem, they are still an inadequate solution. Our understanding of sgRNA binding, mismatch tolerance, and the resulting sgRNA design tools has advanced significantly, but it is still rather limited when it comes to offtarget effect (Lino et al., 2018).

Applying genome editing to many fruit species is complicated by heterozygosity and polyploidy of the genome since many more copies of the genes must be modified to get the desired phenotype. Due to somatic mosaics of CRISPR-Cas9-induced mutations and limited editing efficiency, finding heritable mutations may be difficult. It is challenging to test new ideas and advance genome editing since many fruit trees have a protracted juvenile stage. Public hostility to GMOs suggests that transgene-free genome editing methods must be developed forcefully for fruit crops (Zhou et al., 2020).

Recombinant viruses with Cas9 endonuclease resistance could start to appear suddenly. These recombinant viruses can avoid CRISPR/Cas9 targeting because of the limited number of InDels targets for the sgRNA sites. The targeted genomic region containing the Cas9 endonuclease cannot be recognized by the sgRNA sites due to these alterations, despite the fact that they do not stop viral replication. Transgenic crops made with these viruses begin to lose their resistance to them as a result of unique viral variants produced by CRISPR-Cas9's genome-editing byproducts, which hasten viral development (Shahriar et al., 2021).

5. Future prospects of CRISPR-Cas9 in agriculture

The CRISPR-Cas9 system can be used to create multiplex gene knockouts, including as double, triple, and quadruple mutants, in some perennial species, including Populus and Eucalyptus. Furthermore, because perennial plants have a lengthy juvenile phase, eradicating the CRISPR construct by backcrossing requires time. Recently, two sitespecific recombination methods were developed to eliminate T-DNA from the trans-gene locus in rice. This might do away with the need for backcrossing. Using protoplast transfection, a DNA-free genome editing method based on preassembled CRISPR-Cas9ribonucleoproteins was more recently established in Arabidopsis, tobacco, lettuce, and rice. This DNA-free genome editing method could be advantageous for perennial species of citrus and apples that have well-developed protoplast transfection and regeneration systems (Liu et al., 2016).

The CRISPR-Cas9-mediated genome editing technology has created a fresh potential for the quick generation of disease-resistant agricultural varieties by stacking disease-resistant (R) gene(s) or disrupting/deleting susceptibility (S) gene(s). Such agricultural plants should be regarded as non-GMO, nonetheless, in order for this technology to be promptly implemented and acknowledged at the field level. We think that the use of CRISPR-Cas9 technology to a range of crops will transform agriculture and usher in a second green revolution to ensure the food and nutritional security of the rapidly expanding populations of tropical countries (Haque et al., 2018).

In order to generate fruit and vegetable crops that are resistant to herbicides, biotic stress, and abiotic stress, CRISPR-Cas9 has been widely used. Two examples of new cold- and drought-tolerant germplasms that can be produced using gene editing are CBF1 (C-repeat binding factor 1), which regulates cold tolerance in plants, and MAPK3 (MAPK3 dependent protein kinase 3), which participates in the drought stress response to safeguard tomato plant cell membranes from oxidative damage (Wan et al., 2021).

Conclusion

In the CRISPR Technology, CRISPR-Cas plays important role in the field of agriculture. It improves the crop production and help in understanding the functions of genes linked with traits. CRISPR-Cas9 system can cause of second green revolution in the field of agriculture.

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

- Moore, B. D., Andrew, R. L., Külheim, C., & Foley, W. J. (2014). Explaining intraspecific diversity in plant secondary metabolites in an ecological context*. New Phytologist*, 201(3), 733‒750. doi: 10.1111/NPH.12526
- Tyagi, S., Kumar, R., Das, A., Won, S. Y., & Shukla, P. (2020). CRISPR-Cas9 system: a genome-editing tool with endless possibilities. *Journal of Biotechnology*, 319, 36– 53. doi: 10.1016/J.JBIOTEC.2020.05.008
- Upadhyay, S. K., Kumar, J., Alok, A., & Tuli, R. (2013). RNA-guided genome editing for target gene mutations in wheat. *G3: Genes, Genomes, Genetics*, 3(12), 2233– 2238. doi: 10.1534/G3.113.008847
- Wong, N., Liu, W., & Wang, X. (2015). WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system*. Genome Biology*, 16(1), 1‒8. doi: 10.1186/S13059-015-0784-0
- Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D. L., Wei, P., & Zhu, J. K. (2013). Efficient genome editing in plants using a CRISPR/Cas system. *Cell Research*, 23(10), 1229‒1232. doi: 10.1038/CR.2013.114
- Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., & Gao, C. (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. *Nature Biotechnology*, 31(8), 686‒688. doi: 10.1038/NBT.2650
- Chaudhary, M., Mukherjee, T. K., Singh, R., Gupta, M., Goyal, S., Singhal, P., & Sharma, P. (2022). CRISPR/Cas technology for improving nutritional values in the agricultural sector: an update. *Molecular Biology Reports*, 49(7), 7101–7110. doi: 10.1007/S11033-022-07523-W
- Gao, Y., Wu, H., Wang, Y., Liu, X., Chen, L., Li, Q., ... & Zhang, Y. (2017). Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. *Genome Biology*, 18(1), 1-5. doi: 10.1186/S13059-016-1144-4
- Waltz, E. (2016). Gene-edited CRISPR mushroom escapes US regulation. *Nature*, 532(7599), 293. doi: 10.1038/NATURE.2016.19754
- Rao, M. J., & Wang, L. (2021). CRISPR/Cas9 technology for improving agronomic traits and future prospective in agriculture. *Planta*, 254, 1‒6. doi: 10.1007/S00425-021- 03716-Y
- Das, D., Singha, D. L., Paswan, R. R., Chowdhury, N., Sharma, M., Reddy, P. S., & Chikkaputtaiah, C. (2022). Recent advancements in CRISPR/Cas technology for accelerated crop improvement. *Planta,* 255(5), 109. doi: 10.1007/S00425-022- 03894-3
- Pineda, M., Lear, A., Collins, J. P., & Kiani, S. (2019). Safe CRISPR: challenges and possible solutions. *Trends in Biotechnology*, 37(4), 389-401. doi: 10.1016/J.TIBTECH.2018.09.010
- Abdallah, N. A., Prakash, C. S., & McHughen, A. G. (2015). Genome editing for crop improvement: challenges and opportunities. *GM Crops & Food*, 6(4), 183–205. doi: 10.1080/21645698.2015.1129937
- Sikora, P., Chawade, A., Larsson, M., Olsson, J., & Olsson, O. (2011). Mutagenesis as a tool in plant genetics, functional genomics, and breeding. International Journal of Plant *Genomics*, 2011. doi: 10.1155/2011/314829
- Adhikari, P., & Poudel, M. (2020). CRISPR-Cas9 in agriculture: Approaches, applications, future perspectives, and associated challenges. *Malaysian Journal of Halal Research*, 3(1), 6‒16. doi: 10.2478/MJHR-2020-0002
- Fisher, M. C., Henk, D. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L., & Gurr, S. J. (2012). Emerging fungal threats to animal, plant and ecosystem health. *Nature*, 484(7393), 186-194. doi: 10.1038/nature10947
- Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., & Qiu, J. L. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. *Nature Biotechnology*, 32(9), 947–951. doi: 10.1038/nbt.2969
- Li, C., Unver, T., & Zhang, B. (2017). A high-efficiency CRISPR/Cas9 system for targeted mutagenesis in Cotton (Gossypium hirsutum L.). *Scientific Reports*, 7, 1–0. doi: 10.1038/srep43902
- Paula de Toledo Thomazella, D., Brail, Q., Dahlbeck, D., Staskawicz, B. (2016) CRISPR-Cas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broadspectrum disease resistance. *BioRxiv*, 2016, 064824. doi: 10.1101/064824
- Majumdar, R., Rajasekaran, K., Sickler, C., Lebar, M., Musungu, B. M., Fakhoury, A. M., Payne, G. A., Geisler, M., Carter-Wientjes, C., Wei, Q., & Bhatnagar, D. (2017). The pathogenesis-related maize seed (PRms) gene plays a role in resistance to Aspergillus flavus infection and aflatoxin contamination. *Frontiers in Plant Science*, 8, 1758. doi: 10.3389/fpls.2017.01758.
- Ma, J., Chen, J., Wang, M., Ren, Y., Wang, S., Lei, C., Cheng, Z., & Sodmergen. (2018). Disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice. *Journal of Experimental Botany*, 69(5), 1051–1064.
- Pareek, M., & Rajam, M. V. (2017). RNAi-mediated silencing of MAP kinase signaling genes (Fmk1, Hog1, and Pbs2) in Fusarium oxysporum reduces pathogenesis on tomato plants. *Fungal Biology*, 121(9), 775–784. doi: 10.1016/J.FUNBIO.2017.05.005.
- Wang, F., Wang, C., Liu, P., Lei, C., Hao, W., Gao, Y., Liu, Y. G., & Zhao, K. (2016). Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. *PLOS ONE*, 11(4), e0154027. doi: 10.1371/journal.pone.0154027.
- Bart, R. S., & Taylor, N. J. (2017). New opportunities and challenges to engineer disease resistance in cassava, a staple food of African small-holder farmers. *PLoS Pathogens*, 13(5), e1006287. doi: 10.1371/journal.ppat.1006287.
- Zhang, Z., Ge, X., Luo, X., Wang, P., Fan, Q., Hu, G., Xiao, J., Li, F., & Wu, J. (2018). Simultaneous editing of two copies of Gh14-3-3d confers enhanced transgene-

clean plant defense against Verticillium dahliae in allotetraploid upland cotton*. Frontiers in Plant Science*, 9, 842. doi: 10.3389/fpls.2018.00842.

- Van Regenmortel M. H., and Mahy B. W. (2009). Desk encyclopedia of plant and fungal virology. Academic Press; 2009 Oct 13.
- Pyott, D. E., Sheehan, E., & Molnar, A. (2013). Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis. *Virology*, 63(10), 4459–4463. doi: 10.1111/MPP.12417.
- Tashkandi, M., Ali, Z., Aljedaani, F., Shami, A., & Mahfouz, M. M. (2018). Engineering resistance against Tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato. *Plant Signaling & Behavior*, 13(10), e1525996. doi: 10.1080/15592324.2018.1525996.
- Rajput, M., Choudhary, K., Kumar, M., Vivekanand, V., Chawade, A., Ortiz, R., & Pareek, N. (2021). RNA interference and CRISPR/Cas gene editing for crop improvement: Paradigm shift towards sustainable agriculture. *Plants*, 10(9), 1914. doi: 10.3390/PLANTS10091914.
- Macovei, A., Sevilla, N. R., Cantos, C., Jonson, G. B., Slamet-Loedin, I., Čermák, T., Voytas, D. F., Choi, I. R., & Chadha-Mohanty, P. (2018). Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. *Plant Biotechnology Journal*, 16(11), 1918–1927. doi: 10.1111/PBI.12927.
- Kis, A., Tholt, G., Ivanics, M., Várallyay, É., Jenes, B., & Havelda, Z. (2016). Polycistronic artificial miRNA-mediated resistance to Wheat dwarf virus in barley is highly efficient at low temperature. *Molecular Plant Pathology*, 17(3), 427–437. doi: 10.1111/MPP.12291.
- Senthilraja, C., Gurivi Reddy, M., Rajeswaran, J., Kokiladevi, E., & Velazhahan, R. (2018). RNA interference-mediated resistance to Tobacco streak virus in transgenic peanut. *Australasian Plant Pathology*, 47, 227-230. doi: 10.1007/S13313-018-0549-9.
- Baltes, N. J., Hummel, A. W., Konecna, E., Cegan, R., Bruns, A. N., Bisaro, D. M., & Voytas, D. F. (2015). Conferring resistance to geminiviruses with the CRISPR– Cas prokaryotic immune system. *Nature Plants*, 1(10), 1‒4.
- Ji, X., Zhang, H., Zhang, Y., Wang, Y., & Gao, C. (2015). Establishing a CRISPR–Caslike immune system conferring DNA virus resistance in plants. *Nature Plants*, 1(10), 1‒4. doi: 10.1038/nplants.2015.144.
- Ficke, A., Cowger, C., Bergstrom, G., & Brodal, G. (2018). Understanding yield loss and pathogen biology to improve disease management: Septoria nodorum blotch—a case study in wheat. *Plant Disease*, 102(4), 696-707. doi: 10.1094/PDIS-09-17-1375-FE.
- Zhou, J., Peng, Z., Long, J., Sosso, D., Liu, B., Eom, J. S., Huang, S., Liu, S., Vera Cruz, C., Frommer, W. B., & White, F. F. (2015). Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. *The Plant Journal,* 82(4), 632‒643. doi: 10.1111/TPJ.12838.
- Dass, A., Abdin, M. Z., Reddy, V. S., & Leelavathi, S. (2017). Isolation and characterization of the dehydration stress-inducible GhRDL1 promoter from the cultivated upland cotton (Gossypium hirsutum). *Journal of Plant Biochemistry and Biotechnology*, 26(1), 113‒119. doi: 10.1007/S13562-016-0369-3.
- Chen, Y., et al. (2017). A novel non-specific lipid transfer protein gene from sugarcane (NsLTPs), obviously responded to abiotic stresses and signaling molecules of SA and MeJA. *Sugar Tech*, 19(1), 17‒25. doi: 10.1007/S12355-016-0431-4.
- He, P., Zhao, P., Wang, L., Zhang, Y., Wang, X., Xiao, H., Yu, J., & Xiao, G. (2017). The PIN gene family in cotton (Gossypium hirsutum): genome-wide identification and gene expression analyses during root development and abiotic stress responses. *BMC Genomics*, 18, 1‒10. doi: 10.1186/S12864-017-3901-5.
- Wang, L., Chen, L., Li, R., Zhao, R., Yang, M., Sheng, J., & Shen, L. (2017). Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. *Journal of Agricultural and Food Chemistry*, 65(39), 8674–8682. doi: 10.1021/ACS.JAFC.7B02745.
- Huang, X., Zeng, X., Li, J., & Zhao, D. (2017). Construction and analysis of tify1a and tify1b mutants in rice (Oryza sativa) based on CRISPR/Cas9 technology. *Journal of Agricultural Biotechnology,* 25(6), 1003‒1012.
- Wang, L., Wang, H., He, S., Meng, F., Zhang, C., Fan, S., Wu, J., Zhang, S., & Xu, P. (2019). GmSnRK1.1, a sucrose non-fermenting-1 (SNF1)-related protein kinase, promotes soybean resistance to Phytophthora sojae. *Frontiers in Plant Science*, 10, 996. doi: 10.3389/FPLS.2019.00996.
- Bouzroud, S., Gasparini, K., Hu, G., Barbosa, M. A., Rosa, B. L., Fahr, M., Bendaou, N., Bouzayen, M., Zsögön, A., Smouni, A., & Zouine, M. (2020). Downregulation and loss of auxin response factor 4 function using CRISPR/Cas9 alters plant growth, stomatal function, and improves tomato tolerance to salinity and osmotic stress. *Genes*, 11(3), 272.
- Mao, X., Zheng, Y., Xiao, K., Wei, Y., Zhu, Y., Cai, Q., Chen, L., Xie, H., & Zhang, J. (2018). OsPRX2 contributes to stomatal closure and improves potassium deficiency tolerance in rice. *Biochemical and Biophysical Research Communications*, 495(1), 461-467.
- Rodríguez-Leal, D., Lemmon, Z. H., Man, J., Bartlett, M. E., & Lippman, Z. B. (2017). Engineering quantitative trait variation for crop improvement by genome editing. Cell, 171(2), 470‒480. doi: 10.1016/j.cell.2017.08.030.
- Wang, T., Zhang, C., Zhang, H., & Zhu, H. (2021). CRISPR/Cas9-mediated gene editing revolutionizes the improvement of horticulture food crops. *Journal of Agricultural and Food Chemistry,* 69(45), 13260‒13269. doi: 10.1021/ACS.JAFC.1C00104.
- Zhang, J., Zhang, H., Botella, J. R., & Zhu, J. K. (2018). Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties. *Journal of Integrative Plant Biology, 60(5), 369–375, doi:* 10.1073/PNAS.1804774115/SUPPL_FILE/PNAS.1804774115.SD01.XLSX.
- Liu, L., Gallagher, J., Arevalo, E. D., Chen, R., Skopelitis, T., Wu, Q., Bartlett, M., & Jackson, D. (2021). Enhancing grain-yield-related traits by CRISPR–Cas9 promoter editing of maize CLE genes. *Nature Plants*, 7(3), 287-294.
- Cai, Y., Wang, L., Chen, L., Wu, T., Liu, L., Sun, S., Wu, C., Yao, W., Jiang, B., & Yuan, S. (2020). Mutagenesis of GmFT2a and GmFT5a mediated by CRISPR/Cas9 contributes to expanding the regional adaptability of soybean. *Plant Biotechnology Journal*, 18(1), 298‒309.
- Usman, B., Nawaz, G., Zhao, N., Liao, S., Qin, B., Liu, F., Liu, Y., & Li, R. (2020). Programmed editing of rice (Oryza sativa L.) OsSPL16 gene using CRISPR/Cas9

improves grain yield by modulating the expression of pyruvate enzymes and cell cycle proteins. *International Journal of Molecular Sciences*, 22(1), 249.

- Zheng, M., Zhang, L., Tang, M., Liu, J., Liu, H., Yang, H., Fan, S., Terzaghi, W., Wang, H., & Hua, W. (2020). Knockout of two BnaMAX1 homologs by CRISPR/Cas9‐ targeted mutagenesis improves plant architecture and increases yield in rapeseed (Brassica napus L.). *Plant Biotechnology Journal*, 18(3), 644‒654. doi: 10.1111/PBI.13228.
- Wang, W., Pan, Q., He, F., Akhunova, A., Chao, S., Trick, H., & Akhunov, E. (2018). Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. *The CRISPR Journal*, 1(1), 65–74. doi: 10.1089/CRISPR.2017.0010.
- Miao, C., Xiao, L., Hua, K., Zou, C., Zhao, Y., Bressan, R. A., & Zhu, J. K. (2018). Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. *Proceedings of the National Academy of Sciences*, 115(23), 6058– 6063. doi: 10.1073/PNAS.1804774115/SUPPL_FILE/PNAS.1804774115.SD01.XLSX.
- Li, M., Li, X., Zhou, Z., Wu, P., Fang, M., Pan, X., Lin, Q., Luo, W., Wu, G., & Li, H. (2016). Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system. *Frontiers in Plant Science*, 7, 377. doi: 10.3389/FPLS.2016.00377/BIBTEX.
- Rodríguez-Leal, D., Lemmon, Z. H., Man, J., Bartlett, M. E., & Lippman, Z. B. (2017). Engineering quantitative trait variation for crop improvement by genome editing. Cell, 171(2), 470‒480. doi: 10.1016/j.cell.2017.08.030.
- Wang, W., Pan, Q., He, F., Akhunova, A., Chao, S., Trick, H., & Akhunov, E. (2018). Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat. *The CRISPR Journal,* 1(1), 65‒74. doi: 10.1089/CRISPR.2017.0010.
- Chen, K., Wang, Y., Zhang, R., Zhang, H., & Gao, C. (2019). CRISPR/Cas genome editing and precision plant breeding in agriculture. *Annual Review of Plant Biology*, 70, 667‒697. doi: 10.1146/ANNUREV-ARPLANT-050718-100049.
- Camerlengo, F., Frittelli, A., & Pagliarello, R. (2022). CRISPR towards a Sustainable Agriculture. *Encyclopedia*, 2(1), 538–558.
- Chakravorty, M., Nanda, M., Arora, N., Singh, S., Kumar, V., & Deshwal, S. (2022). CRISPR-Cas9 mediated genome tailoring to improve nutritional quality and shelf life in crops: A review. *Plant Gene*, 100369. doi: 10.1016/J.PLGENE.2022.100369.
- Wang, S., Yang, Y., Guo, M., Zhong, C., Yan, C., & Sun, S. (2020). Targeted mutagenesis of amino acid transporter genes for rice quality improvement using the CRISPR/Cas9 system. *Crop Journal*, 8(3), 457‒464. doi: 10.1016/J.CJ.2020.02.005.
- Li, R., Fu, D., Zhu, B., Luo, Y., & Zhu, H. (2018). CRISPR/Cas9-mediated mutagenesis of lncRNA1459 alters tomato fruit ripening. *The Plant Journal*, 94(3), 513–524. doi: 10.1111/TPJ.13872.
- Qi, W., Zhu, T., Tian, Z., Li, C., Zhang, W., & Song, R. (2016) . High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing systembased strategy in maize. *BMC Biotechnology*, 16, 1‒8. doi: 10.1186/s12896-016-

0289-2.

- Camerlengo, F., Frittelli, A., Sparks, C., Doherty, A., Martignago, D., Larré, C., Lupi, R., Sestili, F., & Masci, S. (2020). CRISPR-Cas9 multiplex editing of the αamylase/trypsin inhibitor genes to reduce allergen proteins in durum wheat*. Frontiers in Sustainable Food Systems*, 4, 104. doi: 10.3389/fsufs.2020.00104.
- Andersson, M., Turesson, H., Nicolia, A., Fält, A. S., Samuelsson, M., & Hofvander, P. (2017). Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. *Plant Cell Reports*, 36, 117‒128. doi: 10.1007/s00299-016-2062-3.
- Li, A., Jia, S., Yobi, A., Ge, Z., Sato, S. J., Zhang, C., Angelovici, R., Clemente, T. E., & Holding, D. R. (2018). Editing of an alpha-kafirin gene family increases digestibility and protein quality in sorghum. *Plant Physiology*, 177(4), 1425–1438. doi: 10.1104/pp.18.00200.
- Wang, T., Zhang, H., & Zhu, H. (2019). CRISPR technology is revolutionizing the improvement of tomato and other fruit crops. *Horticulture Research*, 6. doi: 10.1038/S41438-019-0159-X/41964949/41438_2019_ARTICLE_159.PDF.
- Zhang, F., Wen, Y., & Guo, X. (2014). CRISPR/Cas9 for genome editing: Progress, implications, and challenges. *Human Molecular Genetics*, 23(R1), R40-R46. doi: 10.1093/hmg/ddu125.
- Lino, C. A., Harper, J. C., Carney, J. P., & Timlin, J. A. (2018). Delivering CRISPR: A review of the challenges and approaches. *Drug Delivery*, 25(1), 1234–1257. doi: 10.1080/10717544.2018.1474964.
- Zhou, J., Li, D., Wang, G., Wang, F., Kunjal, M., Joldersma, D., & Liu, Z. (2020). Application and future perspective of CRISPR/Cas9 genome editing in fruit crops. *Journal of Integrative Plant Biology*, 62(3), 269‒286. doi: 10.1111/jipb.12793.
- Shahriar, S. A., Islam, M. N., Chun, C. N., Rahim, M. A., Paul, N. C., Uddain, J., Siddiquee, S. (2021). Control of plant viral diseases by CRISPR/Cas9: Resistance mechanisms, strategies, and challenges in food crops. *Plants,* 10(7), 1264. doi: 10.3390/plants10071264.
- Liu, D., Hu, R., Palla, K. J., Tuskan, G. A., & Yang, X. (2016). Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research. *Current Opinion in Plant Biology,* 30, 70-77. doi: 10.1016/j.pbi.2016.01.007.
- Haque, E., Taniguchi, H., Hassan, M. M., Bhowmik, P., Karim, M. R., Śmiech, M., Zhao, K., Rahman, M., Islam, T. (2018). Application of CRISPR/Cas9 genome editing technology for the improvement of crops cultivated in tropical climates: Recent progress, prospects, and challenges. *Frontiers in Plant Science*, 9, 617. doi: 10.3389/FPLS.2018.00617/XML/NLM.
- Wan, L., Wang, Z., Tang, M., Hong, D., Sun, Y., Ren, J., Zhang, N., & Zeng, H. (2021). CRISPR-Cas9 gene editing for fruit and vegetable crops: Strategies and prospects. *Horticulturae*, 7(7), 193. doi: 10.3390/horticulturae7070193.

Citation

Shehzadi, N., Omer, A., Noor, D., Iqbal, J., Nazir, S., & Ur-Rahman, S. (2024). Role of CRISPR/Cas in Agriculture: A brief review. *Journal of Agriculture and Food, 5*(1), 33‒52.